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Abstract

At times it is necessary to obtain a group decision from a number of different
nodes over a large network. Secret sharing protocols allow a quorum q of
a group of n people to arrive at decisions by having the quorum recompute
a predetermined secret, such as an access code, while preventing less than
q people from gaining any information about the secret. However, current
protocols [6, 5] are vulnerable when participants cheat, for example by giving
false information to other participants. In this work, I present a powerful new
protocol which detects cheaters immediately and halts the exchange before
any more information is revealed. In addition, it prevents cheaters from
gaining any information without revealing an equal amount of their own.
This protocol will present new paradigms in a variety of applications, such
as electronic balloting and secure file system fault tolerance.
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1 Introduction and Motivation

In his will; a man left a safe to his eleven squabbling relatives.
To each individual heir, he gave a secret. In his will, he said
that if eight or more of his eleven relatives could put aside their
differences and pool their resources, they could compute the safe
combination from their individual secrets. Otherwise, the safe
would remain locked and no one would inherit anything,.

In order to execute the will in this parable, a special protocol is required
to allow a group of people to share a secret such that a quorum of them
can recompute the secret, yet less than that quorum can gain no informa-
tion. In addition, such a protocol requires the prevention of cheating so that
participants are unable to extract more information than they reveal.

A protocol of this nature is called a (q,n) threshold scheme or secret
sharing problem. A secret sharing problem in general has the following char-
acteristics:

1. a secret S is divided into n pieces, or shares;
2. knowledge of quorum ¢ or more shares allows S to be easily computed;

3. knowledge of ¢ — 1 or less pieces reveals no information about S.

In addition, it must be assured that participants in the protocol are unable
to cheat. The secret sharing problem implicitly assumes that shares will be
pooled by the quorum to compute the secret. Various protocols have been
created [5, 8, 1]. Some of these include techniques to catch cheaters who
might put bogus values into the shared pool of information. Even if cheaters
can be detected, a problem remains since cheaters can still see the contents
of the pool before revealing their own shares. A workable protocol must be
able to ensure that cheaters cannot see the contents of the pool without first
adding their true shares to it. This would ensure that a cheating party could
not gain any advantage.

2 Description

In order to solve a distributed secret sharing problem, a (¢,n) threshold
scheme can be implemented. However, a few extra constraints are needed:




4. Any party involved will be unable to extract someone else’s share with-
out revealing its own.

5. Any party involved with the protocol will be detected if it cheats.
and optionally:

6. New shares can be created which can replace or supplement older
shares.

We assume that the secret is bounded by a public prime p, and ¢ < n.

A protocol which has all of these characteristics can find application in a
variety of settings. For example:

o Distributed Decision Making[4] Let the secret be a key, for example an
access code. The question is whether the access code is allowed to be
used. The solution: divide up the key into n shares and give one share
to each of the n people involved. Let g be the number of “yes” votes
necessary to decide to use the access code. When someone decides
to vote “yes,” she simply adds her share into a general pool. When
q shares are in the pool, the access code can be computed and used.
Otherwise, the access code will remain safely anonymous.

o Hierarchical Access[6] Similar to distributed decision making, let the
secret be a key. However, instead of giving one share to everyone,
prioritize people according to authority. In a business, for example, you
could give the CEO ¢ shares-the secret in essence. For each member
of the board, you could give % shares. For each manager, £ shares, and
so forth. Thus, rather than requiring ¢ people to convene, all that is
necessary is to gather people whom together have ¢ shares.

o Secure File Storage and Fault Tolerance[3, 2] Let the secret be a file.
Let n be the number of disks available with each disk receiving one
share, and let ¢ be the minimum number of shares needed to re-create
tue file. Thus, in order for an interloper to gain access to the file, he
must gain access to q disks. This provides much greater security for files
than would exist by simply keeping the file in one central location as it
requires an interloper to gain access to each individual disk. In addition,
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this method provides superior fault tolerance to a simple backup copy
scheme. In order for the file to be lost, more than n — ¢ — 1 disks
must fail. As this method does not require an extraordinary amount of
additional data over the single backup scheme, it is doubly attractive.

3 Shamir’s Solution

The first secret sharing protocol was created by Adi Shamir [6]. His protocol
is not protected against cheating attacks.

In Shamir’s original protocol, a Dealer, the person who knows the secret,
creates a polynomial f(z) of the form:

fz)=a"+ag 1z '+ +ax+ 5 (mod p)

where the coefficients a; ...a,—; are chosen independently from [0, p). S is
the secret (an integer modulo p) and p is a large public prime.

The Dealer sends to each participant C;...C, f(z) (assume that the
participants know their index). Hereafter, we will refer to f(z) as C;’s share
s. When ¢ participants desire to recompute the secret, they exchange their
shares with each other. We will refer to q as a quorum. Once they have ¢
shares s; ... 34, they can create q equations. To find 5, they need ouly solve
for S and each a; in the following system of equations:

f(s1) = si+ aq_.l.s‘]"" +--Fas1+ S5 (mod p)

f(s2) = si+ aq-,.sg_l +--4+as2+5  (mod p)

f(sq) = si+ag s8I+ +ais,+ 5 (mod p)

where p and each f(s;),s; are known.

To solve for S and a, ... a4-1, all that is required is to solve for ¢ unknowns
with ¢ equations in a modulo field. In matrix form (@ = M9, where @ and
M are known) this is:

f(s1) 81 s 91 Qg1

f(s2) FLAN Sl | :
) = i : (mod p)
. . a

f(3q) LA L | b

v

Known known unknown




All that is needed to solve for v (and thus .5) is a simple matrix inversion
modulo p and multiplication. Computation modulo p is simple to do since
the integers modulo p form a field (Z/pZ).

3.1 Proof of Correctness

Theorem 1 A participant with ¢ — 1 (or less) shares can gain absolutely no
information about the secret S.

Proof: Assuming that a participant does have ¢ — I shares, he can create
the following:

f(s1) 1 + ag-151-
f(Sg) = ‘lg + aq_lsg_

b drasi+ S (mod p)

+otarsp+ S (mod p)

1

f(8¢m1) = si i+ aq_,s;'___} + -t a5+ S5 (mod p)

To find S, he has to solve for ¢ unknowns with only ¢ — 1 equations. The
best he can do is create an equation for S with one degree of freedom [T7],
which gives no information about the actual value of S. [

3.2 Weaknesses

There are two major weaknesses in Shamir’s protocol:

1. Bogus values are undetectable.

2. Participants need not reveal their true share.

These two weaknesses are distinct, because even if a bogus value was de-
tected, it would not necessarily give any information about the true value.
However, should some participant A give another participant B invalid in-
formation after B has already given valid information to A, even if B could
detect A’s bogus information A will still have more information than B. To
see this, consider the following example:

Example 1 Assume that the secret S is 13, and that q is 3. Also assume
that the Dealer has created the polynomial:

fx) =2+ 11t + 42+ 13 (mod 17)
and has distributed the following points to Alice, Bob, and Carl:

4




Alice: (1,12) Bob: (2,5) Carl: (3,15)
Normal interpolation would result in the following equations:

12 = 14+a+b+S (mod 17)
5 = 8+4a+2b+ S (mod 17)
15 1049 +3b+S5  {(mod 17)

which translates into the following matriz form:

11 1 11 a
14 | =4 2 1 b (mod 17)
5 9 3 1 S

which naturally results in [a,b, S] = [11,4,13].
However, if Alice tries to fool Bob and Carl, she can submit (1,38) instead
of her actual value. Bob and Carl will then try to solve:

8 = l4+a+b+5 (mod 17)
5 = 8+4a+20+S (mod 17)
15 = 104+9%+3b+ 5 (mod 17)

which translated in matriz form to:

7 111 a
14| =14 21 b (mod 17)
5 9 31 S

which yields the incorrect result of [a,b,S] = (9, 14, 1]. However, to the eyes
of Bob and Carl, everything is as it should be until the secret is actually used
and is found to be in error. However, Neither Bob nor Carl can determine
who cheated, as Alice can easily interpolate the incorrect answer and show
that to Bob and Carl, demonstrating that she also has been duped and does
not know the true secret. Yet Alice now has both Bob’s and Carl’s shares,
and can compute S at her leisure.

4 Ben-Or/Rabin Solution

Tal Rabin and Michael Ben-Or improved on the protocols of Shamir and
others [8, 1] by introducing a zero-knowledge proof based upon Check Vectors
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into the protocol [3]. The improvement to Shamir’s secret sharing protocol
that we are concerned about is as follows:

For every participant A, B the Dealer picks two positive non-zero integers
baB,yaB € Z, and calculates

cap = (bas)(yaB) + s4 (mod p)

Then instead of just distributing a share s4 to A, the dealer gives A s4 and
yap and B the pair (bag,capn). This pair is known as a Check Vector. It is
important to note that A keeps s4 and yap secret, just as B keeps (bagp, can)
secret.

When a quorum of participants wish to recompute the secret, each par-
ticipant A exchanges his information privately with participant B. B then
uses his check vector (bsp,cap) to ensure that:

sa+ (bap)(yaB) = cap (mod p)

Thus, A cannot try to pass B a bogus value.

4.1 Proof of Correctness
We need to show two things to prove that this protocol works as stated.
Lemma 2 The probability of A deceiving B is p—ll—.

Proof: In order for A to deceive B, A must send a sy and y/yg such that:

3% + (baB)(Wap) = cap (mod p)

However, there is only one possible ¥/, 5 that will satisfy this equation. Thus,
A has a probability of ]L_p to pick the correct value, as he has no information
about (bas,caB). »

Lemma 3 B has no information from his check vector (bag,can)-

Proof: As mentioned in the preceding proof, for all s there exists a unique
y such that:
s+by=c (mod p)

The converse, for every y there exists a unique s, also holds. Thus, B has no
information about s4. n




4.2 Weaknesses

The weaknesses of Shamir’s solution were twofold: participants could reveal
bogus information into the protocol and thereby prevent the secret from
being recomputed, and secondly they could give invalid information after
receiving another participant’s valid information. The Ben-Or/Rabin proto-
col detects fraudulent values handily, eliminating one of the weaknesses of
Shamir’s protocol. Unfortunately, the other still remains, namely:

e Participants need not reveal their true shares.

As this protocol involves an exchange of information, the following situation
is quite possible:

Alice and Bob decide to recompute the secret. Bob sends his partial secret
to Alice, but after receiving both Bob’s secret Alice decides to send either a
bogus value or nothing at all. Thus, Alice can now compute the secret, but
Bob cannot, nor is he able to prevent Alice from doing so.

5 Bitwise Check Vector Solution

The idea behind the ybe Vector Protocol is to use a bitwise variant of the
Ben-Or/Rabin Check Vector solution. The problem with the Ben-Or/Rabin
solution is that at some point in the protocol participant A will have B’s
share, but B will have yet to receive A’s share. Termination of the protocol
at that point will result in A knowing B’s share while keeping his own share
private.

This problem can be resolved by exchanging bits instead of the full num-
bers. Thus, at any point in the protocol, A will only be at most 1 bit ahead
of B, which is not a significant advantage, since exhaustive search techniques
would allow an attacker to search the space of feasible factors. A one bit
advantage translates into a factor of two in search time.

5.1 The ybc Vector Protocol

To describe the protocol, we will initially focus on the bit-by-bit exchange
from Alice (A) to Bob (B). The full protocol between Alice and Bob occurs
when Alice and Bob exchange bits interactively using the bit-by-bit protocol.




(Step 1) The Dealer sends s and y to Alice; b,c to Bob.
For each sy do:

(Step 2a) Alice sends s; and ¥ to Bob.
(Step 2b) Bob verifies that s + b3 = ¢ (mod p).
If so:

Bob sends an acknowledgment.

Alice returns to Step 2a.
Else:

Bob terminates exchange.

Figure 1: One-sided ybe Vector Protocol

Let p be a large published prime. Recall that p is the upper bound on S,
the coefficients a,—; ...a,, and shares s, ...s,.

The one-sided protocol works as detailed in Figure 1. The Dealer sends
a k-bit share s and a vector ¥ of k integers to Alice, and two vectors b and &
of k integers to Bob,

Dealer

Alice Bob
Step 1: Dealer distributes to Alice and Bob.




such that: .
s+ biyi = & (mod p)

where b and 7 are chosen at random, and sf; denotes the itk bit of s.

spij and y; s+ by = o

(mod p)

Alice Bob

Step 2: Alice sends a bit to Bob who then verifies it.

At the end of this protocol, Bob will have Alice’s entire share s. and will
know that s is valid.

Theorem 4 The probability of Alice deceiving Bob on any given bit is p+1'
Proof: Without loss of generality, assume that Alice is going to try to fool
Bob for bit s}, and remain honest for the rest. To fool Bob, Alice needs to
send Bob the pair (-5, yi) such that:

-8+ biyi = ¢ (mod p)

However, from Lemma 2, we know that there exists only one y! that will
1

satisfy the equality. The probability of Alice picking the correct y; is .
The complete protocol is simply a coneurrent extension of the previons pro-
tocol between Alice and Bob. All participants privately transmit the first bit
of their share along with the appropriate y; privately to each other. They
then verify all the bits they receive from the other participants. and continue
to the next bit. This is formalized in Figure 2.

Example 2 Consider the full protocol using three participants, Alice. Bob,

and Carl. The Dealer begins by creating the polynomial and subsequently cre-
ating and sending the appropriate shares and ,b, and ¢ to the participants,
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(Step 1) The Dealer distributes s, and the gbﬁh,&hc, and ¢y, vectors.
For i = 1 to k (where k& is the number of bits in s) do:
(Step 2) Each ('; privately sends se, (i) and Jo,on to (Y
(Stap 3) Each () verifies $¢, 4] + (EC,C‘:')(:JC,C[{) = 5(;)(;‘1' (mod p).
If any (; detects cheating by some (7,:
C| terminates the exchange with (', .
('; notifies the other participants of (", ’s attempt.
Else:
The protocol progresses to the next :.
(Step 4) Each ('; solves for S.

Figure 2: Full ybe Vector Protocol

as detailed in Step 1. For this ezample. assume that the polynomial is of de-
gree 3, which requires all three participants to reveal their shares to recompute
the secret.

Dealer
84 SB S¢
YaB,bBA,CBA YBAbAB,CAB Jearbac. Cac
Yac,bca,Cca yBC.bcu,CoB JoB.bee. Cre
Alice Bob (‘arl

Step 1: Dealer distributes to Alice, Bob, and Carl.
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When all the participants decide to recompute the secret, they will privately
exchange information bit-by-bit, as shoun in Step 2

S Al1] and §4p;

3B[i] and gBAi

Alice
Scli) SAf) SCh)
YC Ai Yaci YCBi

Carl

Step 2: Alice, Bob, and Carl exchange shares.

After each bit is ezchanged, Alice, Bob, and Carl will verify the validity of
the bit using the appropriate check vectors as shown in Step 3. Again. the
calculation is done after each bit is ezchanged and not after all bits have been
ezchanged.

d= 4= 4=

Alice Carl

7

sp(i) + bBA.!IBA: = CBAi Sa() + bABiyABi CABi sA[) + bACi;’/A('i Caci
scp + dcaidicai = oai sop) + bemiesi = oni say + beciFpe: = e
(mod p) (mod p) (mod p)
Step 3: Alice, Bob, and Carl verify each others’ bits.

-+ ||'°
< “ <
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Once all three participants have received the other shares, they each create
the appropriate equations and solve, as shown in Step 4.

SA Sh4 S84 Ssa a;
sp|=1] s} s sp 1 a (mod p)
SC Q?-. Qé Se l q
Alice
SA sy sy osa 1 a
sg | =35} s sp 1 a (mod p)
S¢ a8k s 1 S
Bob
SA 5 84 sa 1 a
sg | =] s} s sp 1 a (mod p)
Sc 3% Sé S¢ 1 S

Carl

Step 4: Alice, Bob, and Carl solve for S.

The secret now being known, they are able to use it as they see fit.

5.2 Space Requirements

For each X,Y, where X and Y are distinct parties holding shares, the Dealer
needs to create the following:

¥xy The ¥ vector which X will use to exchange his share with Y.
gxy The b component which Y will use to verify X’s share.

¢xy The & component which Y will use to verify X’s share.
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Each participant C; has three sets of vectors, each set of length n — 1. Thus,
each C; requires additional space of O(3(n—1)). As there are n participants,
this expands to O(3(n — 1)n) or simply O(n?) extra space for the entire
protocol. .

Note that each gxy,bxy, and ¢xy must Le different for each X and Y

X; otherwise, two participants could collude and thus determine every . b,
and ¢, which would enable them to cheat without detection.

6 Conclusions and Future Research

Secret sharing is unusable unless it can ensure that the people involved with
the protocol are unable to cheat. The ybc vector protocol ensures that any
person involved with the protocol is unable to gain any information from
another person without revealing an equal amount of his own information
(within a constant factor of 2). However, this protocol does have the following
limitations:

1. A cheater can gain an advantage of one bit. Should a cheater decide
to take this advantage during the middle of a transaction and then
attempt to exhaustively search for the remaining bits, then he will
have an advantage of a factor of 2 on the other person. If both parties
have equivalent computational power, then this is not an advantage.
However, this could be a consideration if the cheater has substantially
more computational power (enough so that he can compute the secret
by brute force before the victim is able to do something about it).

2. The memory requirements of this protocol are O(n?). For a reasonable
n, this is not necessarily burdensome; however, for very large n, this
can be a problem. For example, this protocol could be used with ease
to implement electronic balloting with a constituent of 20, but would
be clearly impractical for a popular vote with a constituency of the
United States.

3. This protocol only allows for a one-time use of a secret. Once the secret
has been revealed, all outstanding keys become useless, and there is no
way to re-secure the secret. In the business hierarchy example presented
earlier, the access code would need to be changed at every use, and
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every person involved with the protocol would need a new share (as
well as all extra data required).

Future research on secret sharing would require that we extend the protocol
to overcome these limitations. One idea would be to explore the use of a
secure co-processor [9, 10] with the protocol. Proper use could remove the
need for any form of check vector requirement as well as allowing the secret
to be re-secured; if the secure co-processor is the only entity that interpolates
and discovers the secret, then no participant will ever have knowledge of it.
This idea naturally scales to handle tamper-proof smart cards.
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A Notation

Check Vector A pair (b,c) used to verify a share s.

Dealer The person who originally has the secret and distributes the shares
to the n people.

Participant (A, B,C,etc.) A person involved with recomputing the secret.
k The number of bits in the secret.

n The number of people involved with the secret sharing.

p A large public prime.

g The quorum of people needed to re-create the secret (this must be less
than n).

S The secret. For simplicity, we’ll assume this is an integer modulo p.

s (share) An integer value which, when combined with other shares, re-
computes the secret.

s The 1" bit of s.

#asi The i** component of vector § which is used by B to verify information
from A.
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